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Figure 14. Map of the Rulison area showing potential well locations for production and monitoring outside the 0.5-mile hearing radius (ovals indicate 
the extent of influence of potential 0.5-mile well locations) 
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direction. Subsequent wells could then be installed in a sequence that gradually approaches the 
higher-risk transport direction, currently believed to be in a roughly east–west orientation 
relative to the nuclear detonation.  
 
If testing confirms that the natural fracture trend is oriented east–west, the areas of greatest risk 
will be Lot 12, west of the site, and Lot 10, east of the site. Drilling and producing from these 
two lots is not recommended until the lack of detonation-related contamination is confirmed by 
data from producing wells located in safer directions within the 0.5-mile radius.  
 
No well will be located such that encroachment into or removal of materials from Lot 11 might 
occur. This includes all hydrofractures and flow-inducing gradients by way of production near 
Lot 11 that could cause tritium to migrate from the detonation zone. To ensure that encroachment 
into Lot 11 does not occur, it is recommended that microseismic mapping be conducted during 
the hydrofracturing of wells completed within Lot 10 or Lot 12. It is also recommended that, if a 
microseismic survey conducted during the hydrofracturing of a well indicates fracture 
penetration into Lot 11, the well should not be put into production without written approval 
from DOE. 
 
3.1 Confirmation of Natural Fracture Trends near the Site 
 
The Williams Fork Formation of the Piceance Basin has a natural fracture field that generally 
trends east to west, though the orientation can vary somewhat depending on location within the 
basin. The permeability of the formation is greater in the direction of the natural fracture trend, 
and hydrofractures used to further increase permeability during well development tend to 
elongate in this direction. The orientation of the fracture trend in a given area can be measured 
using several methods. A dipole sonic log can be used to determine the minimum and maximum 
principal stress directions within the formation, which can then be used to infer the stress field 
orientation. Microseismic mapping uses geophones placed in one or more wells near a well being 
completed to monitor hydrofracture propagation.  
 
Microseismic mapping was used to detect average fracture orientation in a portion of the Rulison 
Field, a gas-producing area located approximately 6–8 miles northeast of the Rulison site. 
Results from the microseismic testing illustrated in Figure 15 identified a fracture orientation of 
N 75° W, with a local range of 10 degrees (Wohlart et al. 2005). In the Grand Valley Field 
(approximately 8 miles northwest of the test site), the average fracture orientation was 
determined to be N 84° W, with a local range of 5 degrees (Wohlart et al. 2005). A dipole sonic 
log from Noble Energy well BM 26-34A, 0.75 mile west of the site, supports an east–west 
orientation of the natural fracture trend near the Rulison site.  
 
The results of dipole sonic logs and the microseismic mapping can be used to guide and perhaps 
modify the drilling sequence of future wells recommended in this document.  
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Figure 15. Microseismic mapping of the hydrofracturing of two wells  
 
Mapping was conducted at different times during the winter of 2001–2002 using the same observation 
well (RU-3) in the Rulison Field (modified from Wolhart et al. 2005). The points are microseisms, small 
seismic events associated with hydrofracture propagation. The point colors represent different 
hydrofracture stages (sandstone reservoirs fractured as a group within a given depth range; Cameo is the 
deepest and Mesaverde-3 is the shallowest). Note that the hydrofracture wing nearest the observation 
well has an apparent length greater than the opposite wing. This is interpreted as an artifact of detection 
distance from the observation well, not the actual asymmetry of hydrofracturing extent. 
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4.0 Summary and Conclusions 
 
DOE does not believe detonation-related contamination poses a threat to nearby gas-producing 
wells. The fracturing caused by the detonation is contained within the 40-acre institutional 
control boundary, Lot 11. The flow of fluids (gas or liquid) that could transport contamination is 
limited in the low-permeability formation in the absence of stimulation (such as nuclear or 
hydraulic fracturing) that increases permeability. The gas phase is about 1000 times more mobile 
than liquid in the gas-bearing reservoirs and the only gas-phase radionuclide that remains in 
significant quantities after reentry well testing and decay is tritium, as tritiated water. The 
potential for tritium migration is also retarded by partitioning of tritiated water between the gas 
phase and less mobile liquid phase.  
 
A numerical model was constructed to simulate a staged drilling approach near the Rulison site. 
DOE recommends that wells drilled near Rulison be installed in a sequential manner, allowing 
data to be collected at wells a similar distance from the site before drilling nearer wells. The 
model simulated this approach by adding model projected wells 5, 10, and 15 years after 
production began at existing wells in the model domain. No contaminant migration was induced 
in the simulations even after wells were located as close as would be feasible given current 
well-spacing constraints in the area. Even though contaminant migration is believed to be highly 
unlikely based on current data and numerical modeling, DOE recognizes the potential for 
uncertainties that have not been identified and were not included in the model. For instance, no 
high-permeability short circuits were simulated, such as a permeable fault zone or a laterally 
continuous coal seam that would be more susceptible to extensive fracturing than sandstone. 
DOE continues to recommend that gas development near Rulison follow the staged drilling 
approach to minimize the likelihood of encountering detonation-related contamination. 
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